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Dynamical scaling of surface growth in simple lattice models
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We present extensive simulations of the atomistic Edwards-Wilkinson~EW! and Restricted Edwards-
Wilkinson ~REW! models in 211 dimensions. Dynamic finite-size scaling analyses of the interfacial width
and structure factor provide the estimates for the dynamic exponentz51.6560.05 for the EW model andz
52.060.1 for the REW model. The stochastic contribution to the interface velocityU due to the deposition
and diffusion of particles is characterized for both the models using a blocking procedure. For the EW model
the time-displaced temporal correlations inU show nonexponential decay, while the temporal correlations
decay exponentially for the REW model. Dynamical scaling of the temporal correlation function for the EW
model yields a value ofz, which is consistent with the estimate obtained from finite-size scaling of the
interfacial width and structure factor.
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I. INTRODUCTION

The diverse morphologies of thin films growing on so
surfaces by vapor deposition are controlled by nonequi
rium kinetics instead of equilibrium thermodynamics. Co
petition between deposition and diffusion of atoms on s
faces produces nonequilibrium surface fluctuations, wh
in turn, determine the film structure. At long times and lar
length scales, the structures produced by the depositio
atoms ondifferent substrates often appear similar@1#, and
therefore it is believed that a unique dynamics can charac
ize the growth behavior in these dissimilar systems. Dur
the past decade significant effort has been expended on
improvement of understanding of these ‘‘generic’’ morph
logical features of surface growth, as well as the charac
istic nonequilibrium surface fluctuations that produce the
using simple atomistic growth models and continuum grow
equations@2#. Due to the complex nature of the growth pr
cess, obtaining an understanding of the dynamics that
duce these generic surface fluctuations has been challen
Although continuum growth equations have provided insi
into the possible nature of the fluctuations, much still
mains to be understood,including the effect of long-range
temporal correlations on growth behavior. In this paper we
explore this special aspect of surface growth through co
puter simulations of two quite simple atomistic~lattice!
growth models: the (211)-dim Edwards-Wilkinson~EW!
model, which is a simple lattice realization of the physic
description underlying the Edwards-Wilkinson equation, a
the ‘‘restricted’’ Edwards-Wilkinson ~REW! model @3#,
which differs from the EW model by a simple, but importan
modification of the diffusion rule. The EW model has be
studied previously by computer simulation@4#; but we shall
show that, presumably due to the limited computer resou

*Present address: SciMax Research, P.O. Box 0015, Moun
View, California 94042-0015, USA.
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available at that time, this earlier study arrived at the wro
conclusions.

Remarkably, long-range temporal correlations are
served in a diverse array of driven systems far from equi
rium, from semiconductor resistors@5,6# and superconducto
Josephson junctions@7# to the information superhighway@8#.
Numerical simulations of a nonlinear growth equation dev
oped by Kardar, Parisi, and Zhang~KPZ! @9# have shown
that long-range temporal correlations in the velocity of t
fluctuating interface are present@10#. These manifest them
selves as power-law divergences in the low-frequency fl
tuation spectrum. Also, another form of temporal correlatio
in surface growth has been investigated using the KPZ eq
tion @9# and has been discussed in Ref.@11#. Medina et al.
@11# derived growth exponents as a function of a parame
that characterized the decay of temporally correlated noi

In a growing surface, two correlation lengthsj i and j'

develop as the surface structure evolves in time. The par
correlation lengthj i is typically the size of long-wavelength
structures on the surface and increases with time. In addit
the perpendicular correlation lengthj' which is proportional
to the interfacial width, grows with time. Whenj i , andj'

have grown to scales that are larger than atomistic leng
but much smaller than the size of the system, some unive
growth laws and dynamical scaling behavior, characteri
for a few universality classes, are expected@2,12#. One pur-
pose of this study is to probe such concepts. If growth
continued for long enough time, thenj i;L, whereL is the
lateral extent of the system, andj' also reaches a saturate
value. Because spatial correlations reach static values, in
face shape fluctuations should become time invariant
any long-range temporal correlations, if present, will vani
These observations serve as the basic premise of this st

In the following section we will describe the atomist
EW and REW growth models and also provide a gene
scaling theory of the interfacial width and the structure fa
tor. In addition, we will introduce a dynamical quantit
U(t), which will be used to characterize the~possibly tran-
sient! stochastic contribution to the interface velocity durin
in
©2003 The American Physical Society01-1
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growth. Measurement of the surface properties such as
interfacial width, structure factor, andU are discussed in Sec
III. The results for the interfacial width and structure fact
for the EW and REW models are presented in Sec. IV, as
data for the surface stiffnessl and stochastic contribution t
the interface velocityU, and all properties are then analyze
using dynamic finite size scaling. Section V includes disc
sion and the conclusion appears in Sec. VI.

II. THEORETICAL BACKGROUND AND MODELS

A. Atomistic EW and REW models

The EW model describes the growth of a random int
face above a substrate onto which particles are rando
deposited by a stochastic flux. The mathematical descrip
of this process is given in terms of a linear Langevin eq
tion @13–15#

]h

]t
5n¹2h1z, ~1!

whereh(r ,t) is the deviation of the height of the interfac
above the substrate at timet and at positionr from its aver-
age value. The coefficientn is the surface tension, andz is
the noise term of the random deposition process. In the o
nal EW formulation@15# the noise is taken to bed correlated
in space and time, but due to the linearity of Eq.~1!, the
treatment could easily be generalized to take into acco
correlations of the noise. It is these possible correlations
are of interest in the context of our study, as we shall try
identify the individual terms of Eq.~1! directly from the
simulations. Indeed, we shall find that the term inz is
strongly correlated. Taking the spatial and temporal fou
transformh(k,v) of h(r ,t) we find that the height-heigh
correlations can be formally expressed in terms of the no
correlations as follows:

^h~k,v!h~k8,v8!&5
^z~k,v!z~k8,v8!&

~nk22 iv!~nk822 iv8!
. ~2!

For the EW equation, it is easy to derive the growth expon
z52 ~see also Secs. II B and II C below!, but it turns out that
this description is too simplified and does not capture
actual behavior of many atomistic growth models. On a c
tinuum level, an important feature that is not contained
Eq. ~1! is nonlinearity. For example, the growth equati
suggested by KPZ@9# ammends Eq.~1! by adding a term
proportional to (¹h)2. Such a correction term describes t
fact that the macroscopic growth rate depends on the sur
tilt @12#. Such nonlinearities lead to long-range height-hei
correlations both in space and time beyond those that ca
described by Eqs.~1! and ~2!, and they lead to a nontrivia
value of the dynamic exponentz ~which then also depend
upon the dimensionality of the system!.

Various atomistic deposition models~e.g., Refs.@16–25#!
have been studied, and some of them~such as Ref.@4#! have
been interpreted as being an atomistic version of the
model. As we shall demonstrate in this paper, it is a su
matter to ascertain whether or not a particular atomi
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model is equivalent to the linear EW equation, since eff
tive nonlinearities could be generated in the coarse-grain
procedure. In addition, as we shall show below, some of
claims made for the values of the dynamic exponent@4# are
invalid, presumably because the early work was restricte
too small a range of lattice sizes.

In the present paper we focus on two atomistic mode
which we call the ‘‘atomistic EW model’’ and the ‘‘restricte
EW ~REW! model.’’ To simulate the atomistic EW model w
begin with a flatL3L substrate with periodic boundary con
ditions. Particles are randomly deposited on the surface
time t in the simulation is measured in units of the number
monolayers deposited. Only a freshly deposited particle
move just after it is deposited, but onlyonce, to a nearest-
neighbor column with a minimum height if such a site
available. In case two or more available sites have the s
minimum height, the final site is chosen randomly.

In the REW model@3# a freshly deposited particle move
to a nearest-neighbor column with the minimum height
such a site is uniquely defined. If several such sites are av
able, the deposited particle does not move to any of th
but stays instead where it was initially deposited! At th
point it appears as though the distinction between our R
model and the original ‘‘atomistic EW model’’ is an irrel
evant detail; but as we shall show later, only the REW mo
can serve as an atomistic version of the EW equation.
‘‘atomistic EW model’’ seems to belong, instead, to a diffe
ent universality class of growth models. Thus, in contras
the EW model no move is allowed if two or more equa
deep sites are present.

B. Scaling theory of interfacial width

To characterize the surface fluctuations in a given grow
model, traditionally interfacial widths have been measur
This is a simple and elegant approach to describe the sur
dynamics when growth proceeds to long times, but rec
studies suggested that for intermediate times lattice step
sity gave better agreement with a continuum theory of s
face fluctuations@26#. The interface fluctuations in the atom
istic EW and REW models have been characterized
measuring the interface widthW(L,t), where

W2~L,t !5@^h2~r ,t !&2^h~r ,t !&2#, ~3!

^h(r ,t)&5L2d( rh(r ,t), L is the lateral extent of the system
d is the interface dimensionality and^•••& denotes ensemble
average. In general, the widthW(L,t) of a kinetically rough-
ened surface evolves according to the dynamic scaling
@13#

W2~L,t !5L2a f S t

LzD , ~4!

where the exponenta characterizes the surface fluctuatio
in a given growth model andz is the dynamic exponent. Th
scaling function has the propertyf (x);xa/z, for x!1 and
1-2



-

v
c

p

s
e

e
ou
ct
he

lin

e
b

,

op-
ical
n of

w
om.
r

rgy
f-

the
le

ight

ran-
y

er-
lex
ese

ic-
ua-

ce
ts,
ux,
the
us,
as

ges
the

om.
not
ese

n
ne
be-
del
o

ic

his

DYNAMICAL SCALING OF SURFACE GROWTH IN . . . PHYSICAL REVIEW E68, 021601 ~2003!
f (x)→const, forx@1. Solution of Eq.~1! givesa 5 0 for
two-dimensional interfaces, andz52 independent of the in
terface dimensionality.

The linear Langevin equation@Eq. ~1!#! has been solved
exactly by Nattermann and Tang@27# who derived expres-
sions for the interfacial width and structure factor. We ha
used these theoretical solutions to define the dynamical s
ing relations in the atomistic models. For long timet and
large substrate sizesL, the interfacial widthW(L,t) is ex-
pected to satisfy the dynamic scaling relation@28#

W2~L,t !5A lnFL f S t

LzD G , ~5!

where f (x) is the scaling function,z is the dynamic expo-
nent, andA is a constant. The scaling function has the pro
erty f (x);xb, for x!1 and f (x)→const, for x@1. The
exponentsz andb satisfy the relation

zb51. ~6!

Thus for smallt and largeL, the interfacial width behaves a
W2;Ab ln t, while for very long times it saturates at a valu
(W`) andW`

2 2A ln L;const.

C. Scaling theory of structure factor

The surface dynamics can also be characterized by m
suring the structure factor, which provides information ab
the surface at different length scales. The structure fa
S(qL,L,t) can be obtained from the Fourier transform of t
spatial correlation function,

S~qL,L,t !5L2d(
r ,r8

H~r ,t !H~r 8,t !exp@ iq•~r2r 8!#,

~7!

whereH(r ,t)5h(r ,t)2^h(r ,t)&, qL52np, andn is an in-
teger. The structure factor should satisfy the dynamic sca
law @29#,

S~qL,L,t !5L (22h)g~ t/Lz,qL!, ~8!

whereh is an exponent andz is the dynamic exponent. Th
long-wavelength behavior of the surface can be probed
using a small value ofq. In this limit and for large lattice
sizes,g(x,qL);xg, for x!1, andg(x,qL)→const, forx
@1. Herezg522h. From the solution of the EW equation
we obtain@27#

n2S~qL,L,t !5L2~D/n!@12exp~28n2p2nL22t !#, ~9!

whereD and n are constants. This givesS(qL,L,t);t for
L→` and small t, while at long timesS(qL,L,t→`)
→L2. This implies that for the EW equationh50, and the
exponent identity

zg52 ~10!

needs to be satisfied for self-consistency.
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D. The stochastic contribution to the interface velocityU

To understand the long-time and large length-scale pr
erties of a dynamical system, a standard approach in crit
phenomena is to define a semiphenomenological equatio
motion. A small set of semimacroscopic variablesf i , i
51,2, . . . ,N is used whose dynamical evolution is slo
compared to the remaining microscopic degrees of freed
In these equations@29# the remaining ‘‘fast’’ variables ente
only in the form of random forces~usually called the noise
z i). The equation can be written as

]f i

]t
52( Mi j

dF
df j

1z i , ~11!

whereF is the Ginzburg-Landau coarse-grained free ene
functional andM is the matrix of generalized Onsager coe
ficients. Depending on the models studied@29#, the noise can
have spatial correlations, and for equilibrium systems
noise isd correlated in time. The EW equation is a simp
extension of the above approach where the noise isd corre-
lated in time, and the semimacroscopic variable is the he
h(r ,t) of the surface.

Since in the presence of an external field, such as a
dom flux, the system is driven away from equilibrium, it ma
be necessary to include additional terms in Eq.~1! to cor-
rectly account for any effects due to deposition. The int
play of the flux and surface diffusion can cause comp
behavior at long times and large length scales, and so th
terms are often difficult to construct accurately. For simpl
ity we assume that any additional terms to the growth eq
tion, if present, can be included in a new, general functionU,
which we term the stochastic contribution to the interfa
velocity. Apart from any relevant surface shape gradien
such a term includes the random contribution due to the fl
and spatiotemporal couplings that may be important to
growth behavior at long times and large length scales. Th
the simplest form of the growth equation may be written

]h~r ,t !

]t
5l¹2h~r ,t !1U~r ,t !, ~12!

wherel is a measure of the surface stiffness, which chan
with time as the surface grows. The physical meaning of
stochastic contribution to the interface velocityU may be
understood by comparing Eq.~12! with Eq. ~1!. In Eq. ~1!
the interface velocity]h/]t does not fully include the effects
that diffusion may cause to the interface degrees of freed
Thus, the translation of the interface due to growth does
accurately produce appropriate surface fluctuations. Th
effects are fully included in Eq.~12!.

In general,U should capture representative informatio
about system dynamics in an atomistic growth model if o
of the surface gradients contributing to the asymptotic
havior is the curvature. The dynamics of the atomistic mo
and the continuum equation~12! may then be compared t
obtain a measure ofU. If the behaviors of the atomistic
model and the EW equation~1! are the same, the stochast
contribution to the interface velocity~U! should be random
in both space and time. An elegant way to determine, if t
1-3
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PAL, LANDAU, AND BINDER PHYSICAL REVIEW E 68, 021601 ~2003!
is the case, is to calculate its space and time-displaced
relation functions. This, in turn, will elucidate if any non
trivial correlations relevant to the long-time and large leng
scale dynamics are present in the system.

III. MEASUREMENT OF SURFACE PROPERTIES

The surface fluctuations in the EW and REW models
characterized by measuring the interfacial width@cf. Eq. ~3!#
and the structure factor@defined by Eq.~7!#. The structure
factor is measured along the~1,0! and ~0,1! directions and
averaged over these directions.

To measure the stochastic contribution to the interf
velocity during growth, we write Eq.~12! in a discrete form.
The time derivative ofh(r ,t) becomes

]h~r ,t !

]t
5

h~r ,t1Dt !2h~r ,t2Dt !

2Dt
, ~13!

wheret is normally equal to the number of monolayers d
posited unless another unit has been specified. Note that
monolayer corresponds to the deposition ofL3L particles.
The curvature of the surface at positionr can be written as a
finite difference formula

¹2h5h~x,y11!1h~x11,y!1h~x21,y!1h~x,y21!

24h~x,y!, ~14!

wherer5 ix1 jy, i,j are unit vectors on the two-dimension
surface. During growth, we calculate two quantities:Q1
5^]h/]t& r andQ25^¹2h& r , where^•••& r denotes an aver
age over space within a given block sizeb, at a given timet.
An estimate of the stiffness of the surfacel(b,t) is then
obtained by taking the ratioQ1 /Q2. To obtainU(r ,t) we put
the value of the surface stiffnessl back into Eq.~12!. Equat-
ing the left- and right-hand sides of the equation we c
calculate the dynamical contribution to the interface veloc

U~r ,t !5
]h~r ,t !

]t
2~Q1 /Q2!¹2h, ~15!

at a given timet for eachsite. Here]h(r ,t)/]t and¹2h are
given by Eqs.~13! and ~14!, respectively. To reduce the e
fect of local spatial correlations,U is averaged over blocks o
size b to obtainU(b,t), which then allows us to study it
properties over different block sizes for a givenL. To study
the temporal correlations inU(b,t), we calculate the time-
displaced correlation functionC(b,t). The correlation func-
tion is written as

C~b,t!5
^U~b,t1t0!U~b,t0!&2^U~b,t0!&^U~b,t1t0!&

^U2~b,t0!&2^U~b,t0!&2
,

~16!

where the scaling properties must be independent oft0. In
order to compare with the continuum Edwards-Wilkins
equation we must examine the behavior of the atomi
model for length scales that are much greater than a la
constant and for long time scales so that the discretene
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space and time are no longer evident. If it turns out that
mean value ofU is zero under these conditions, thenU is just
the stochastic noise of the EW equation. IfU is nonzero, the
atomistic model should not be expected to have the sa
behavior as the continuum equation.

Lattice sizes ranging fromL520 to L51800 were used
for these simulations, and data points were averaged o
multiple runs starting with different random number see
For the majority of the calculations we used the rand
number generatorRAN2 @30# which has a large period o
;231018, and passes standard statistical tests within
limitations of a machine’s floating-point representatio
Some calculations of the interfacial width were perform
using RAN0 @30# where anew seed was used in every few
thousand random numbers to minimize any serial corre
tions. RAN0 is about twice as fast asRAN2 but has a small
period of ;109 and fails thex2 test when the number o
random numbers exceed 107. A total of about 37 000 CPU
hours, using IBM RS/6000 and Pentium processors, w
expended on these calculations. Since we required large
tice sizes to clearly establish the scaling properties an
large number of runs to generate data with high accura
significant computational resources were a necessity.

IV. RESULTS

A. EW model

Figure 1~a! shows the square of the interfacial wid
W2(L,t) versus the number of deposited layers in a se
logarithmic scale. After an initial transient, up to about
layers, the data points crossover to a region whereW2(L,t)
evolves logarithmically witht before eventually saturating
due to finite system size. The number of runs varied from
for L51280 to 2000 forL540, and the error bars (1s) are
about the size of the symbols. Data obtained with a hig
temporal resolution show small amplitude oscillations in t
interfacial width, but these quickly decay with increasin
time and substrate sizes. ForL5640 and averages over 20
independent runs, the oscillations in the surface width
came indistinguishable within statistical fluctuations f
growth exceeding;60 monolayers.

Examining the long-time data, we find that the region
logarithmic time evolution grows with increasing lattice siz
This is because the parallel correlation length takes a lon
time to reach the order ofL for larger lattice sizes. The
asymptotic behavior is shown as a dotted line that is ve
cally shifted and shows that the trend extends over th
decades for the largest lattice size studied. When we plot
data in a log-log scale, we find systematic curvature, sugg
ing that the time evolution ofW(L,t) is not described by a
power-law. The time evolution is logarithmic and can
written asW2;Ab ln(t). The slope of the straight line in th
semilogarithmic fit is estimated to beAb50.04060.001.

The square of the saturated interfacial width@W2(L,t
→`)5W`

2 # also has a logarithmic behavior withL, as
shown as an inset in Fig. 1~a!. The slope of the best linear fi
yields A50.066260.0004. Using Eq.~6! we estimate the
dynamic exponentz51.6560.05. The exact scaling expres
1-4



e
m

-
ng is

ent
face
ics.
these
en-
ing
ize
ig.
t
er
size.
ine
e
r

o-

-
g

r-

ns,
d
le

en

el
re
for

th
hen
s
cil-
W
em

,

mi-
he

fter

el
n

l

DYNAMICAL SCALING OF SURFACE GROWTH IN . . . PHYSICAL REVIEW E68, 021601 ~2003!
sion for the linear EW equation, derived in Ref.@27#, can be
used to obtain an estimate of the intrinsic widthW0. By
referring to Fig. 1~a!, we estimateW0

2;0.298. With just one
monolayer of deposition, the interfacial width is already b
yond the crossover regime and the estimate of the dyna
exponentz given above is the asymptotic value.

We have verified this estimate forz self-consistently by
performing finite-size scaling of the data. Figure 1~b! shows
dynamical scaling of the interfacial width withz51.63; ex-

FIG. 1. ~a! The square of the interfacial width for the EW mod
vs the number of deposited layers. The inset shows the variatio
the square of the saturated interfacial width (W`

2 ) with lattice sizeL
on a semilogarithmic scale.~b! Dynamical scaling of the interfacia
width usingA50.066 andz51.63 for the EW model.~c! Dynami-
cal scaling of the interfacial width usingA50.066 andz52.0.
02160
-
ic

cellent collapse of data is achieved with a value forz that is
consistent with our previous estimate. Withz52.0 scaling
failed, as can be seen in Fig. 1~c!, systematic deviations ap
pear as larger lattice sizes are used, suggesting that scali
not obeyed.

When a surface grows it develops structures at differ
length scales, and at long times only the large-scale sur
distortions contribute to the characteristic system dynam
The structure factor has been measured to characterize
long-wavelength surface distortions. The number of indep
dent runs varied from 4000 to 250 for lattice sizes rang
from L540 to L5640, and the error bars are about the s
of the symbols. The structure factor data is plotted in F
2~a! on a log-log scale usingqL52p. The figure shows tha
S(qL,L,t) has a power law behavior from the first lay
deposited and saturates at late times due to finite system
The asymptotic behavior is shown by the straight dotted l
that has a slopeg51.2360.01. The inset shows that th
saturated structure factorS(qL,L,t→`) behaves as a powe
of L. A slope of 2.0260.03 obtained from the log-log plot is
consistent withS(qL,L,t→`);L2 according to the scaling
relation in Eq.~9!. Thush;0 and, by using Eq.~10!, we get
z51.6460.04. We have verified this estimate of the exp
nent to be self-consistent in Fig. 2~b!. Collapse of scaled data
is achieved with this value ofz, validating the dynamic ex-
ponentz51.6560.05 obtained from the analysis of the in
terfacial width. Figure 2~c! shows that an attempt at scalin
with z52.0 clearly fails.

At this point, we comment briefly on the conclusion a
rived at by Liu and Plischke@4# that z52 for the present
model. Their study used much smaller linear dimensio
ranging fromL530 to L5100; and for such a restricte
range ofL, we would also not have been able to clearly ru
out z52. In order to unambiguously distinguish betwe
different values of the exponentz, a quite large range ofL
and very good statistical precision are needed.

B. REW model

The square of the interfacial widthW2(L,t) is plotted
against timet on a semilogarithmic scale for the REW mod
in Fig. 3~a!. For both the interfacial width and the structu
factor, 4000 to 500 independent runs were performed
lattice sizes ranging fromL540 to L5320. The error bars
are about the size of the symbols. The interfacial wid
W(L,t) shows some curvature up to about 60 layers and t
approaches a linear behavior witht. Note that measurement
with a higher temporal resolution did not produce any os
lations in the interfacial width as observed for the E
model. At long times the width saturates due to finite syst
size. The interfacial width behaves asW2(L,t);Ab ln(t) in
the linear region, and the slope is given byAb50.086
60.004. The saturated interfacial widthW2(L,t→`) is also
plotted with the substrate sizesL in a semilogarithmic scale
shown as an inset in Fig. 3~a!. A straight-line fit through the
data points shows that the saturated width varies logarith
cally with L, a behavior also observed in the EW model. T
slope obtained from the fit isA50.17360.002. Since the
REW model has been obtained from the EW model a

of
1-5
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PAL, LANDAU, AND BINDER PHYSICAL REVIEW E 68, 021601 ~2003!
minor modifications to the hopping rule, we expect the fun
tional dependence of the interfacial width and the struct
factor with time and substrate sizes to be similar. The m
surements of the interfacial width have so far demonstra
this agreement. Thus, we assume the scaling theories fo
interfacial width and the structure factor developed for
EW model are applicable to the REW model as well. Us
Eq. ~6! we therefore obtain the exponentz52.060.1 for the
REW model.

FIG. 2. ~a! The structure factorS(qL,L,t) vs the number of
deposited layers for the EW model usingqL52p. The inset shows
the saturated values of the structure factor with lattice sizes
log-log scale.~b! Dynamical scaling of the structure factor in
log-log scale usingz51.63. ~c! Dynamical scaling of the structur
factor for the EW model usingz52.0.
02160
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We have tested dynamical scaling for the REW mo
usingz52.0, as shown in Fig. 3~b!. The data for small lattice
sizes and short times do not collapse. However, a defi
trend can be seen in the data with larger lattice sizes, wh
collapse on to a single curve when growth proceeds to l
times. This behavior indicates that dynamical scaling is s
isfied by the interfacial width in the limit of long times an
large lattice sizes.

The structure factor data are shown in Fig. 4~a! with time
t in a log-log scale usingqL52p. Unlike the behavior of the
interfacial width, asymptotic behavior is observed fro
about the first layer deposited. The asymptotic behavio
indicated by the dashed straight line that has a slope og
51.0160.02, implying a linear evolution of the structur
factor. This is similar to the behavior one would expect
growth occurred according to the linear Langevin equati
From the log-log plot of the saturated structure factor withL
@inset of Fig. 4~a!#, we get S(qL,L,t→`);L (2.0360.04) in
agreement with the scaling relation in Eq.~9!. Therefore,h
;0 andz52.0160.08. In Fig. 4~b! we have tested the dy
namical scaling of the structure factor withz52.0. Note that
the scaled data for the smaller lattice sizes ofL540 andL
580 deviate and do not collapse on to a single curve; ho
ever, the data forL5160 collapse nicely on theL5320 data.
This suggests that dynamic scaling should be satisfied

a

FIG. 3. ~a! The square of the interfacial width vs time in
semilogarithmic scale for the REW model. The inset shows
square of the saturated interfacial widthW2(L,t→`) with L in a
semilogarithmic scale.~b! Dynamical scaling of the interfacia
width usingz52.0 andA50.173.
1-6
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DYNAMICAL SCALING OF SURFACE GROWTH IN . . . PHYSICAL REVIEW E68, 021601 ~2003!
larger lattice sizes are used withz52.0.
From the measurements of both the interfacial width a

the structure factor, we find that the scaling behavior of
REW model is identical to the linear Langevin equation w
d correlated noise@Eq. ~1!#. The above results also convinc
ingly demonstrate that the surface fluctuations generated
the deposition of particles in the atomistic EW model are
the same as produced by Eq.~1!, and this difference is mani
fested by different dynamical scaling exponents in these
models.

C. Calculation of U and its properties

In Sec. III we have elucidated the measurement of
stochastic dynamical contribution to the interface veloc
U(b,t) and the surface stiffnessl(b,t). Figures 5~a! and
5~b! show the time dependence of the surface stiffn
l(b,t) and the dynamical contribution to the interface velo
ity U(b,t) in log-log and linear scales, respectively, for se
eral block sizes. The data forb5100, 60, 30, and 15 were
averaged over 40, 35, 30, and 30 independent runs, res
tively, and the error bars are within the symbol sizes. B
l(b,t) andU(b,t) decay with timet and should saturate du
to finite-size effects when large number of layers are dep
ited. As the surface grows,l(b,t) andU(b,t) initially decay
rapidly, with slow decay setting in when large number
layers are deposited. The rate of decay also shows a de

FIG. 4. ~a! The structure factor for the REW model usingqL
52p in a log-log scale. The inset shows the saturated values o
structure factor withL in a log-log scale.~b! Dynamical scaling of
the structure factor for the REW model usingz52.0.
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dence on the blocksizeb. Note that because of very slow
decay ofl(b,t) and U(b,t) at long times, data with very
high accuracy are needed for dynamical scaling stud
Therefore, we will not attempt dynamic scaling ofl(b,t)
andU(b,t) with our current data.

The slow relaxation can be seen in Fig. 5~c! where we
have plottedU(b,t) vs t for b5100 up tot510 000 layers.
The data points represent averages over 20 independent
After an initial rapid decay, the data appear to saturate w
viewed over;3000 layers; however, observations over
much longer time interval reveal a systematic and slow
cay in the data. We have modeled the decay inU(b,t), using
the general combination of exponential decay and power

f ~ t !5a01a1ta221exp~2a3t !, ~17!

wherea0 , a1 , a2, anda3 are constants. At short times th
power law dominates and the behavior is governed by
exponenta2. For long times the exponential term becom
important.

To compare the response to the interface velocity due
deposition, we have plottedU(b,t) for the EW and REW
models witht for b530 in a log-linear scale in Fig. 5~d!. The
solid circles are data for the atomistic EW model, and
dashed line isU(b,t) for the REW model. The solid line
through the data points in solid circles is a fit to Eq.~17!. The
Levenberg-Marquardt method@30# is used to fit the data
points and excellent fit to the data is obtained with hi
statistical confidence. Equation~17! can therefore be used t
model the temporal decay ofU(b,t) in the EW model with
good accuracy. The fact thatU does not decay to zero with
time t is surprising: If the stochastic contribution were a ra
dom noise, it would vanish on average.

Using Eq.~16! we have computed the normalized tim
displaced temporal correlation functionC(b,t) for the EW
and REW models. Figure 6~a! showsC(b,t) vs t in a log-
log scale using several block sizes andL51200. The data
for b5100, 60, 30, and 15 were averaged over 200, 2
150, and 100 runs, respectively, and the error bars are a
the size of the symbols.t052000 is used for these calcula
tions. The figure shows that the temporal correlations de
with the displaced timet, and the decay gets slower as larg
block sizes are used. The curvature in the data points s
gests that the decay does not obey a power law. Plotting
data in a log-linear scale does not produce a linear de
either, implyingC(b,t) does not decay exponentially. Not
that beyondt52000, U(b,t) decays very slowly@cf. Fig.
5~c!#. It is this region ofU, which has been used to calcula
the temporal correlations. A slow decay inU suggests that
long-wavelength surface fluctuations are being genera
and therefore the temporal behavior ofC(b,t) in this region
should be important to the growth dynamics.

For this dynamical information to be useful,C(b,t) must
be independent ofL, the lateral extent of the system, whi
the extensive properties ofC(b,t) should depend only on
the blocksizeb. It is important to determine whetherU(b,t)
contains information that is intrinsic to the dynamics of t
system. In Fig. 6~b! we have shownC(b,t) vs t for the EW
model usingL51200 andL5600 for several block sizes

e
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FIG. 5. ~a! The surface stiffnessl(b,t) for the EW model vs the number of deposited layers.~b! The nonequilibrium dynamica
contribution to the interface velocityU(b,t) vs the number of layers deposited usingL51200.~c! U(b,t) vs t for the EW model.~d! U(b,t)
vs t for the EW and REW models.
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The data points forL5600 andb560, 30, and 15 were
averaged over 120, 80, and 50 runs, respectively. The fig
shows that the data for differentL, but same block size, fal
on the same curve. This implies thatC(b,t) is independent
of L and only depends onb. Additional measurements usin
L51800 andb5100 are in agreement with the above obs
vations.

An important point to note is thatC(b,t) has to be inde-
pendent oft0 @cf. Eq. ~16!# for the measurements and d
namical scaling of the temporal correlations to be robust
the time-dependent correlationC(b,t) depends upon two
times, it means that the system is still in a transient st
Figure 6~c! showsC(b,t) with t for the EW model in a
log-linear scale for different values oft0. For t053000,
2000, 500, and 200, the data points were averaged over
230, 90, and 60 runs, respectively. The figure shows that
small values oft0 the temporal correlations decay quickl
When larger values oft0 are used,C(b,t) decays slowly and
finally approaches a behavior where it is independent oft0.
This is seen in Fig. 6~c! for the two largest values oft0,
where the data points are seen to collapse on the same c
Another interesting point to note here is thatC(b,t) decays
nonexponentially witht. A Levenberg-Marquardt fit@30# for
the two largest values oft0 using Eq.~17! yielded excellent
fits with high statistical confidence, suggesting that Eq.~17!
02160
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may be used to study the dynamical scaling properties
C(b,t) in the EW model.

In Fig. 6~d! we have plottedC(b,t) with t in a log-linear
scale for the REW model usingt054000. The data points fo
both b5100 and 30 were averaged over 72 runs. After
initial transient, the decay in the data becomes linear, s
gesting an exponential decay of temporal correlations at l
times. This behavior is better observed forb530 where
C(b,t) is seen to decay exponentially fort.200. An expo-
nential decay of the temporal correlations is consistent w
the solutions of the linear Langevin equation, which has
dynamic exponent ofz52.0.

The calculation of spatial correlations is important in d
termining whether the dynamical scaling theory we p
sented in Sec. II is robust. Usingt052000, we have calcu-
lated the space-displaced correlation function^UqUq8&,
where Uq is the Fourier transform ofU(r ,t). The spatial
correlation function is plotted in Fig. 7~a! for different q
values where the data points represent averages over
independent runs. ForL5300 andb51, spatial correlations
can be seen in the data for smallq, which decay as large
values ofq are used. The solid line through the data points
a Gaussian fit using the Levenberg-Marquardt method@30#.
When the spatial correlation function is calculated ove
coarse-grained lattice usingL5600 andb52 ~i.e., keeping
1-8
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FIG. 6. ~a! The time-displaced correlation functionC(b,t) vs t for the EW model.~b! C(b,t) vs t for the EW model using severa
lattice sizesL and block sizesb. ~c! C(b,t) vs t for the EW model usingL51200, b560, and different values oft0. ~d! C(b,t) vs t for
the REW model usingL51200. The dotted lines are a guide to the eye.
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the overall length same!, the correlations do not show an
systematic behavior over a wide range of length scales,
gesting that the spatial correlations are random. This dem
strates that nontrivial spatial correlations are not being g
erated by the model, while also assuring that the rand
number generator is producing good quality numbers.

We have used larger values ofDt in Eq. ~13! to investi-
gate their effects on the time-displaced correlationsC(b,t).
In Fig. 7~b!, C(b,t) with t for Dt51, 2, and 4 has bee
plotted usingb560. For these runsL51200 is used. Also,
t052000 andt054000 were used forDt51 and Dt52,
respectively. ForDt54 we have usedL51800 and t0
58000. The data points forDt52, andDt54 were aver-
aged over 18 and 10 runs, respectively. The figure shows
the behavior ofC(b,t) with t is independent of the value
of Dt and t0. We have also performed some additional c
culations where deposition of eight monolayers evolved ti
by one unit. In these studiesL51800, b5300, and t0
5500 are chosen. Due to a higher rate of deposition per
time, C(b,t) for a single run is much noisier as expecte
Also, the data deviate from an exponential decay in agr
ment with the behavior observed in Fig. 6~c!.

D. Dynamical scaling ofC„b,t…

For a finite system with lateral lengthL, the properties of
U can be studied by coarse graining the two-dimensio
02160
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surface intol 3 l blocks of blocksizeb5L/ l and measuring
U over the blocksizeb. If U is an extensive quantity, the
meaningful dynamical information through the measurem
of C(b,t) can be obtained by studying it over differe
blocksizes. Note that an analogous process has been us
determine the noise properties of magnetic flux in superc
ducting Josephson junction arrays~JJA! @31#.

The blocked, time-displaced correlation function~neglect-
ing higher-order corrections! can be written generally as

C~b,t!;tm(b)21exp@2V~b!t#, ~18!

whereV(b) is the blocksize dependent frequency that det
mines the decay inC(b,t) at long times. In Eq.~18! we have
assumed a functional form similar to that in Eq.~17!, allow-
ing for a dependence of the exponentm(b) on the block size
b as well. Empirically, we find that a variation linear in th
inverse blocksizeb21 accounts for the data,

m~b!5m2s/b, ~19!

wheres is a constant. The blocksizeb establishes a cutoff for
low-frequency fluctuations, and this, in turn, controls t
amount of information inC(b,t) relevant to the growth be
havior at long times. Hence the decay of temporal corre
tions is determined by the blocksizeb.
1-9
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A general form for a dynamic scaling relation for th
function of the time-displaced correlation function is

C~b,t!;bz[m(b)21]FS b,
t

bzD , ~20!

wherez is the dynamic exponent. The function

F~b,x!5xm(b)21exp@2Vcx#, ~21!

for x.0, and the frequencyVc is a constant that characte
izes the nonequilibrium fluctuations in a given grow
model. The ratioP(b,t)5C(b,t)/tm(b)21 simplifies the de-
pendency ont and b in a manner such that at long time
P(b,t) decays exponentially and dependsonly on x5t/bz.
Note that for dynamical scaling to hold, the finite-size dep
dent frequencyV(b) should satisfy a constraint such that

V~b!;b2zVc . ~22!

In order to test for scaling of the temporal correlations
the EW model @Fig. 6~a!#, we have to determine th
asymptotic value ofm(b) and the value of the constants @cf.
Eq. ~19!#. The data in Fig. 6~a! are therefore fitted~excluding
the values fort50) to Eq. ~17! using the Levenberg
Marquardt method@30#. Comparing Eqs.~17! and ~18!, we
find that m(b) and V(b) are given bya25m(b) and a3
5V(b), respectively. Excellent fits are obtained for differe

FIG. 7. ~a! The space-displaced correlation function ofU vs q
for the EW model. The solid curve is a Gaussian fit through the d
points.~b! C(b,t) vs t for the EW model using different values o
Dt.
02160
-

t

block sizes with high statistical confidence. The values
each of the coefficientsa0 for different block sizes obtained
from the fits are less than 0.037 and show no system
dependence onb. Also, the coefficientsa1(b) are roughly 1
and exhibit no systematic dependency withb. Figures 8~a!
and 8~b! show the plots ofa25m(b) anda35V(b) vs 1/b.
The straight-line fit through the data points in Fig. 8~a! gives
m50.99860.001 ands52.9760.02 @cf. Eq. ~19!#. In Fig.
8~b!, the power-law fit through the data points forb5100,
60, and 30 yieldedz51.6560.04, andVc54.061.0, re-
spectively. Note thatVc can be estimated from this figure
the equalityV(b)5b2zVc is assumed to be valid.

Using z51.65 we tested dynamical scaling of the temp
ral correlations in the EW model, with the results shown
Fig. 8~c!. Excellent collapse of the data is obtained for t
three largest block sizes over a wide range oft values. After
an initial transient, the data appear to decay exponenti
with a slope of;3.0. Whenz52.0 is used, the data fo
different block sizes show systematic deviations and fail
collapse onto a single curve@Fig. 8~d!#. The failure of scaling
in the EW model withz52.0 agrees with our earlier obse
vations on the scaling of the interfacial width and the stru
ture factor.

V. DISCUSSION

The extensive simulations described above produced
cise data for the interfacial widthW(L,t) and the structure
factor S(qL,L,t) as a function of substrate sizeL so that a
careful finite-size scaling analysis could be carried out. O
very important component of this study was the additio
determination of the stochastic contribution to the interfa
velocity U(b,t), a quantity whose temporal correlations c
offer insights about the dynamical evolution that are n
clarified by the interfacial width or the structure factor.

For the linear Langevin equation@Eq. ~1!#, U(b,t) is d
correlated in both space and time, implying a random con
bution to the growth velocity due to deposition. In the orig
nal formulation of Edwards and Wilkinson@15#, the growth
velocity was written as

]h~r ,t !

]t
5Fv1Fa4¹2h1z, ~23!

whereF is the deposition rate per unit area,v is the volume
increase of the system in unit time,a is the lattice constant
andz is the random noise. The effect of deposition is giv
by Fv1z, where the termFv causes a steady increase in t
interface height due to deposition of a certain volume
material. Note that this equation can be transformed into
~1! by using the transformationh1Fvt→h. In contrast, for
the KPZ equation (l f /2)(¹h)21z accounts for the effect o
deposition, wherel f is proportional to the deposition rate
The important distinction between these two equations is
in the EW equation the interfacial growth velocity due
deposition does not accurately couple to the internal deg
of freedom of the interface. It is, therefore, questiona
whether the EW equation can be used to study far-fro
equilibrium growth processes. Measurement ofU(b,t) for

ta
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FIG. 8. ~a! m(b) vs 1/b for the EW model in a linear scale.~b! V(b) vs 1/b in a log-log scale.~c! Dynamic scaling of the time-displace
temporal correlation function for the EW model usingz51.65,m50.998, ands52.97. ~d! Dynamic scaling of the time-displaced tempor
correlation function for the EW model usingz52.0, m50.998, ands52.97.
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the atomistic EW model demonstrates the shortcomings
the EW equation. Also, it should generally provide a bet
estimate of the stochastic contribution to growth than
phenomenological term used in the KPZ equation.

The extensive computer simulations described above
vealed nonequivalent dynamical behaviors for the EW a
REW models, and this difference has two important implic
tions. First, it suggests that minor but ‘‘essential’’ differenc
in the local dynamics can influence time-dependent beha
in nonequilibrium systems. This is contrary to the behav
one normally expects in systems under equilibrium con
tions and near the critical point, i.e.,j i;L. Second, by ob-
serving the differences in the local dynamics in these t
models, we may be able to define a mechanism by wh
surface shape fluctuations become correlated as the su
grows. This, in turn, may explain whyz for the atomistic EW
model is different from 2.0.

A possible explanation for the uncorrelated evolution
surface fluctuations in the REW model is that the grow
dynamics in the REW model may be viewed as a two-s
process:~1! a particle is deposited randomly on the surfa
~2! the particle is then movedonly if a suitable site is found
which is at the lowest depth and not in competition with a
neighboring sites. The net effect of step~1! is to produce
uncorrelated surface fluctuations. If step~2! is possible, the
02160
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particle move then contributes only deterministically to t
surface shape. The state of the surface shape at timet may be
characterized by a functionalS(h1 ,h2 , . . .hi ,t), wherehi ’s
are the heights at different sites. For the REW model,hi is
nondegenerate, implying that there is only one way the s
face can evolve from state to state so that the surface s
evolves deterministically from one discrete time to anoth
Thus, if information on the sites where particles are ra
domly deposited are available~sequentially within a time
interval Dt), it will enable to reverse the surface shape
reversing time. Since deposition causes random fluctuat
in the surface shape, the net effect of deposition and sur
diffusion in the REW model results in surface shapes t
correlate in a simple manner during growth.

In contrast, for the EW modelhi is degenerate, allowing
for many possibilities from which the surface shapes c
evolve from state to state. This property of the local diffusi
dynamics in the EW model makes it impossible to reve
the surface shape by simply reversing time, even if inform
tion is kept on the sites where particles are randomly dep
ited ~sequentially within a time intervalDt.! The overall ef-
fect is to generate nontrivial correlations with surface sha
at previous times. Although ‘‘layer-by-layer’’-like oscilla
tions were seen in the early time simulation data for
interfacial width for the EW model, these die away rath
1-11
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quickly. This behavior suggests that lattice effects@32# could
differentiate the EW model from a continuum model. Ho
ever, the rms interfacial width is of order unity for both th
EW and REW models, and we believe that the relativ
small difference is unlikely to account for the difference
measured values ofz. From the existing data for the EW w
estimate that approximately 1012 layers would have to be
grown for the interfacial width to reach the values we fou
for the REW model. This is clearly beyond our ability
simulate with current resources. Although we could sim
remove the lattice restriction to test for lattice effects, suc
modification would also eliminate the degeneracy in ene
amongst nearest-neighbor sites and change the diffusion
fundamental way. We also note that similar behavior to w
we found for the EW model has been seen in molecu
beam epitaxy~MBE! growth simulations using lattice mod
els for which the interfacial width becomes large compa
to the lattice constant, yet dynamic scaling is still found w
z51.65. We thus conclude that it is unlikely that lattice e
fects are responsible for the difference in dynamic expon
between the EW and REW models. Of course, we can
exclude the possibility that our data are not yet in t
asymptotic regions of size and time; however, our rat
massive simulation gave no hint of any crossover to ano
regime. This suggests that if crossover does occur, sev
orders of magnitude more effort will be needed to detec
and there is little hope of doing so in the near future. Th
we believe that the most likely explanation for the diffe
ences between the EW and REW models results from
nontrivial correlations that we have found in the coar
graining analysis.
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VI. CONCLUSIONS

We have presented extensive simulations of the 211 di-
mensional atomistic EW and REW models using lattice si
as large asL51800, although only data for sizes as large
L51280 were presented in the manuscript. For each mo
self-consistent dynamic finite size scaling was obtained
both the structure factor and interfacial width with a dynam
exponent ofz51.6560.05 for the EW model butz52.0
60.1 for the REW model. No hint of crossover to differe
behavior was seen for the largest lattices, even after 103–104

layers were deposited. The local diffusion dynamics in
EW model show nontrivial temporal correlations, and this
likely to explain why the atomistic EW model dynamic e
ponent differs from that for the continuum EW equation
the REW model. This also implies that the kinetic Mon
Carlo studies of MBE models should be expected to find t
z differs from that for the continuum EW equation, sinc
randomness in the diffusion is an essential feature of
models.
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